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Problem Set III: Due TBA 
 
1a) Determine the general dispersion relation for surface waves in a fluid of finite depth d.  

Treat the fluid as ideal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) Discuss the limits , . 
 
 
c) For , deduce by analogy with sound waves the equations describing surface waves 

in shallow water.  Hint:  the dynamical fields are water height and horizontal velocity.  Try 
to deduce/guess the nonlinear equations, called shallow water equations. 

 
 
d) Comment on the relevance of shallow water dynamics to the objective of ripple tank 

demonstrations, frequently used to stimulate optical wave phenomena in high school 
physics classes. 
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2) In MHD, the Ohm’s Law is  
 

   

 
 and displacement current is neglected (low frequency!), so – with Faraday’s Law – one 

obtains the magnetic induction equation, which closely resembles the vorticity equation. 
 
 
a) Derive the magnetic field induction equation.  Show  is frozen-in for compressible 

ideal MHD. 
 
 
b) For ideal MHD, prove Alfven’s Theorem: 
 
 
   
 
 Be sure to treat motion of the loop.  What is this the counterpart of? 
 
 
c) What does Alfven’s theorem mean? 
 
 
 
 
 
 
 
3a) Derive the dispersion relation for buoyancy waves in a stably stratified fluid with  

and . These are called internal waves. Take the equilibrium hydrostatic. Show that 
internal waves are ‘backward’, i.e. the phase and group velocity can be in opposite 
directions. 

 
b) Generalize your analysis of internal waves to include rotation effects, where . 

When are corrections to the dispersion relation due to rotation of significance? 
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Physics 216/116  Winter 2020 
 

 3 

4) Falkovich observes that the interfacial version of the ideal flow shear driven instability (i.e. 
the Kelvin-Helmholtz instability) necessarily has a maximum (or minimum) in the profile 
of vorticity located at the interface.  This problem addresses the presence of inflection 
points in smooth profiles leading to ideal shear flow instabilities. 

 
 Consider an inviscid incompressible shear flow  in a domain , 

.  Show that for instability to occur, there must be at least one value of x in 
 for which , i.e. there must be an inflection point in the flow.  It is useful 

to approach this using the 2D vorticity advection equation and to write .  Also, 
write the frequency  as . 

 
 N.B.:  The theorem you just derived was first proved by Rayleigh (who else?) and 

establishes only that an inflection point is necessary for instability.  A second theorem, 
due to Fjortoft, demonstrates that a vorticity maximum is necessary. 

 
 
 
5) Consider a thin extensible sheet that flexes itself in such a way that its coordinates 

(𝑥#, 𝑦#) = (𝑥, 𝑎	 sin(𝑘𝑥 − 𝜔𝑡)), i.e. it oscillates in the vertical direction and a wave travels 
with velocity 𝑐 = 𝜔/𝑘 to the right. Such a motion is not time-reversible and we want to 
show that it results in a steady flow component 𝑈  of the fluid above the sheet. The 
velocity can be calculated explicitly in the limit ∈= 𝑘𝑎 ≪ 1 and 𝑈 =∈7 𝑐/2. 

 
 Introduce the stream function 𝜓 such that the two components of the velocity (𝑢, 𝜐) =

(𝜕=𝜓,−𝜕>𝜓). Consider the Stokes limit of small Reynolds numbers and show that the bi-
Laplacian of 𝜓 vanishes. Write down the boundary conditions dictated by the motion of 
the sheet (𝑥#(𝑡), 𝑦#(𝑡)). Reduce the equations to a non-dimensional form by appropriate 
rescalings and assume ∈	= 𝑘𝑎 small, i.e. deviations of the height of the free surface from 
𝑦 = 0 are small. 

 
 We shall seek a perturbative solution 𝜓 = 𝜓@+∈ 𝜓B …	. Expand in ∈  the bi-Laplacian 

equation and the boundary conditions at the surface of the flexible sheet, and write down 
the corresponding equation and boundary conditions up to first order. Imposing the 
boundary condition that the flow stay finite as 𝑦 → +∞, find the expression for 𝜓@ and 
𝜓B  and verify that the latter tends to a constant as 𝑦 → ∞ . Show that the constant 
coincides (in the original variables) with 𝑈. Acheson will be useful here. 

 V = Vy x( ) ŷ 0 ≤ × ≤ a
− ∞ < y < +∞

0,a[ ]  
2∂ Vy ∂ 2x = 0

 v = ∇φ × ẑ
ω  realω + iγ


